Exploring JSON-LD

And of course, querying it with SPARQL.

xI paid little attention to JSON-LD until recently. I just thought of it as another RDF serialization format that, because it's valid JSON, had more appeal to people normally uninterested in RDF. Dan Brickley's December tweet that “JSON-LD is much more widely used than Turtle” inspired me to look a little harder at the JSON-LD ecosystem, and I found a lot of great things. To summarize: the amount of JSON-LD data out there is exploding, and we can query it with SPARQL, so it offers…

Changing my blog's domain name and platform

New look, new domain name.

For too long I've postponed the migration of my blog to something more phone-friendly. I accumulated many notes about doing this, and I also wanted to move more of my online life from the snee.com domain to bobdc.com. When someone recently asked me about changing the stylesheet (I have dug and dug in the aforementioned notes but can't remember who and will add their name here if I ever find it) I thought I'd take a deep breath and follow through with this. This is the last new blog entry you'll…

curling SPARQL

A quick reference.

I've been using the curl utility to retrieve data from SPARQL endpoints for years, but I still have trouble remembering some of the important syntax, so I jotted down a quick reference for myself and I thought I'd share it. I also added some background.

Querying machine learning distributional semantics with SPARQL

Bringing together my two favorite kinds of semantics.

When I wrote Semantic web semantics vs. vector embedding machine learning semantics, I described how distributional semantics–whose machine learning implementations are very popular in modern natural language processing–are quite different from the kind of semantics that RDF people usually talk about. I recently learned of a fascinating project that brings RDF technology and distributional semantics together, letting our SPARQL query logic take advantage of entity similarity as rated…

Playing with wdtaxonomy

Those queries from my last blog entry? Never mind!

After I wrote about Extracting RDF data models from Wikidata in my blog last month, Ettore Rizza suggested that I check out wdtaxonomy, which extracts taxonomies from Wikidata by retrieving the kinds of data that my blog entry's sample queries retrieved, and it then displays the results as a tree. After playing with it, I'm tempted to tell everyone who read that blog entry to ignore the example queries I included, because you can learn a lot more from wdtaxonomy.

Extracting RDF data models from Wikidata

That's "models", plural.

Some people complain when an RDF dataset lacks a documented data model. A great thing about RDF and SPARQL is that if you want to know what kind of modeling might have been done for a dataset, you just look, even if they're using non-(W3C-)standard modeling structures. They're still using triples, so you look at the triples.

SPARQL full-text Wikipedia searching and Wikidata subclass inferencing

Wikipedia querying techniques inspired by a recent paper.

I found all kinds of interesting things in the article “Getting the Most out of Wikidata: Semantic Technology Usage in Wikipedia's Knowledge Graph”(pdf) by Stanislav Malyshev of the Wikimedia Foundation and four co-authors from the Technical University of Dresden. I wanted to highlight two particular things that I will find useful in the future and then I'll list a few more.